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On a safe capital stock for consumption maintenance
in a convex model of stochastic growth

Tapan Mitra∗ and Santanu Roy†

In a stochastic one-sector optimal growth model with convex technology we show
that there may be a critical “safe” capital stock for maintaining positive consumption
over time. Consumption and capital paths are bounded away from zero with prob-
ability one if the initial stock is above this safe level, but are arbitrarily close to zero
with positive probability if it is below. We derive verifiable sufficient conditions on
technology and preferences under which the optimal policy generates such a critical
stock. High risk aversion near zero, decreasing risk aversion and large spread of the
technology shock are important factors behind this phenomenon.
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1 Introduction

An important purpose of economic growth theory is to understand the circumstances
under which a positive level of consumption is maintained over time. Even when the
growth path of a competitive market economy maximizes the intertemporal welfare of its
agents, one may be justifiably concerned about dynamic social stability if the consumption
possibilities are reduced to zero, or levels arbitrarily close to zero, over time. It is well
known that the dynamic economic incentives of agents may lead to the latter outcome
even when it is technologically feasible to sustain positive capital and consumption over
time. When the production technology is convex i.e., marginal productivity of investment
decreases with accumulation of capital, the return on investment is at its highest when
the economy’s capital stock is near zero. For such technology, one would expect that the
incentive to deplete capital would be minimized near zero so that if a minimum positive
level of capital and consumption over time is maintained from some initial capital stock,
it would also be true from initial capital stocks that are close to zero. In other words, in a
convex framework, one would expect that either capital and consumption may be depleted
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to levels arbitrarily close to zero from all positive initial stocks, or the economy maintains a
positive level of capital and consumption from all such stocks. This intuition is confirmed
by results obtained in the deterministic one sector model of optimal economic growth
where (see last part of Section 3) consumption and capital either decline to zero from all
initial capital stocks, or converge to a positive steady state from all (positive) initial stocks.
In this paper, we argue that in the stochastic version of the model, the incentive to expand
capital and consumption may not be maximized near zero even though the technology
is convex and marginal productivity of investment is maximized at zero. We show that
there may be a critical “safe” stock such that for initial stocks below the safe level, levels of
consumption and capital may get arbitrarily close to zero (with positive probability) while
for initial stocks above the safe level, a minimum positive level of consumption and capital
are maintained over time.

In the literature, the existence of such a critical stock has been typically associated with
non-convexity in the technology (such as S-shaped production functions). With such non-
convexity, productivity can be low when stocks are close to zero so that it may be optimal to
deplete capital over time when the initial capital is small, but it may be optimal to sustain
capital (and consumption) when the initial capital is large (and productivity of investment
is higher).1 While such non-convexities capture important features such as increasing
returns to scale in production technology and “depensation” in biological production
(in models of optimal resource management), much of the mainstream macroeconomic
growth literature has focused on models where the aggregate technology is convex and
marginal productivity of investment diminishes with capital accumulation. This paper
indicates that with uncertainty, the optimal policy in such a convex model may display
some of the qualitative features found in deterministic models when the technology is
non-convex.

Our framework is the standard one sector optimal stochastic growth model with
discounting where technology shocks are independent and identically distributed over time
and have bounded support (Brock and Mirman 1972); in particular, we confine attention to
the case where the technology shock is multiplicative and the marginal productivity at zero
is finite. We derive sufficient conditions under which the optimal policy is characterized by
a critical “safe” stock for capital and consumption to be bounded away from zero.

The important economic factors driving our result are the extent of risk and the
degree of risk aversion of the representative agent. In the presence of risk, risk aversion
creates an incentive to favor the certainty of current consumption against the uncertain
stream of future consumption added by investment. When the spread of technological
uncertainty is large, high risk aversion near zero depresses the incentive to invest so that
capital and output decline under bad realizations of the technological shock; indeed, this
may occur even if the productivity or return on investment is very high near zero. On the
other hand, if risk aversion declines sharply with consumption, then for levels of initial
stock that are somewhat higher (above a “safe” level), it may be optimal to invest enough
so that capital and output expand even under the worst realization of the technology

1
See, among many others, Majumdar and Mitra (1982), Dechert and Nishimura (1983), Clark (1990),
Kamihigashi and Roy (2007).
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shock, and a minimum level of capital and consumption is maintained over time with
probability one.

The literature on stochastic growth with convex technology characterizes conditions
under which capital and consumption paths from all initial stocks are bounded away
from zero (see, among others, Brock and Mirman 1972; Chatterjee and Shukayev 2008;
Mitra and Roy 2010).2 A smaller literature has focused on the possibility that capital and
consumption paths are arbitrarily close to zero no matter how large the initial stock, and
even if the marginal productivity at zero is infinitely large (see, Mirman and Zilcha 1976;
Mitra and Roy 2010).3 The literature on non-convex stochastic models of optimal resource
management has discussed the existence of a critical safe stock for maintaining capital and
consumption (referred to as a “safe standard of conservation”); see, among others, Olson
and Roy (2000) and Mitra and Roy (2006). To the best of our knowledge, this is the first
paper to demonstrate the possibility of such a critical stock in a convex model.

The paper is organized as follows. Section 2 outlines the model and some basic results.
Section 3 discusses in detail the concept of maintaining consumption and the critical safe
stock. Section 4 contains the main results of the paper. Proofs of the results are contained
in Section 5.

2 The model

We consider an infinite-horizon one-good representative agent economy. Time is discrete
and is indexed by t = 0, 1, 2, . . . . The initial stock of output y0 > 0 is given. At each date
t ≥ 0, the representative agent observes the current output stock yt ∈ R+ and chooses the
level of consumption ct and current investment xt , such that

ct ≥ 0, xt ≥ 0, ct + xt ≤ yt

This generates yt+1, the output stock next period through the relation

yt+1 = rt+1h(xt )

where h(.) is the deterministic component of the production function and rt+1 is a mul-
tiplicative random production shock realized at the beginning of period (t + 1). Given
current output stock y ≥ 0, the feasible set for consumption and input is denoted by �(y);
that is,

�(y) = {(c , x) : c ≥ 0, x ≥ 0, c + x ≤ y}.
The following assumption is made on the sequence of random shocks:

2
More general models of stochastic growth that allow for non-convexity have also addressed this question. See,
among others, Olson and Roy (2000), Mitra and Roy (2006), Nishimura, Rudnicki, and Stachurski (2006).

3
It is important to distinguish this literature from models of stochastic growth where technology shocks are
“unbounded” so that the output generated by any level of investment, however large, may be arbitrarily small.
Kamihigashi (2007) shows that if the marginal product at zero is finite, then every feasible path converges
almost surely to zero, provided the random shocks are “sufficiently volatile”.
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(A.1) {rt}∞t=1 is an independent and identically distributed random process defined on a
probability space (�, F , P ), where the marginal distribution function is denoted by
F . The distribution F is concentrated4 on a closed interval A = [α, β] ⊂ R++where
0 < α < β < ∞, and for all s ∈ (0, β),

F (α + s ) > 0, F (β − s ) < 1.

Further, E (r −p) = ∫A r −pd F (r ) is continuous in p on R++.

The last part of (A.1) is a technical assumption that simplifies the conditions outlined
in our main results.

The deterministic part of the production function h : R+ → R+ is assumed to satisfy
the following:

(T.1) h(x) is concave in x on R+.
(T.2) h(0) = 0.
(T.3) h(x) is strictly increasing and continuously differentiable on R+, h′(x) > 0 for all

x ≥ 0.
(T.4) h satisfies the following:

h′(0) >
1

α
· (1)

Further:

lim
x→∞

βh(x)

x
< 1.

Assumptions (T.1)–(T.3) are standard monotonicity, concavity and smoothness restric-
tions on production. In particular, (T.3) implies that marginal productivity is bounded on
R+ and so h′(0) < ∞. The first part of assumption (T.4) ensures that it is feasible for capital
and output to grow in a neighborhood of zero even under the most adverse realization of
the random shock. The second part of the assumption implies that the technology exhibits
bounded growth. There is a unique positive solution to the equation βh(x) = x ; we denote
this by K . Then,

βh(x) > x for all x ∈ (0, K ); βh(x) < x for all x > K . (2)

Let δ ∈ (0, 1) denote the utility discount factor. Given the initial stock y0 > 0, the
representative agent’s objective is to maximize the expected value of the discounted sum of
utilities from consumption:

E

[ ∞∑
t=0

δt u(ct )

]

where u is the one period utility function from consumption.

4
For this terminology, and its relation to the support of the distribution, see Marshall and Olkin (2010).
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Let R̄ = R ∪ {−∞}. The utility function u : R → R̄ satisfies the following restrictions:

(U.1) u is strictly increasing, continuous and strictly concave on R+ (on R++ if
u (0) = −∞); u (c) → u (0) as c → 0.

(U.2) u is twice continuously differentiable on R++ with u′(c) > 0, u′′(c) < 0 for all c > 0.

(U.3) limc→0 u′(c) = +∞.

Assumptions (U.1) and (U.2) are standard. Note that we allow the utility of zero
consumption to be −∞. (U.3) requires that the utility function satisfy the Uzawa–Inada
condition at zero.

Let R(c) be the Arrow–Pratt measure of relative risk aversion at c defined by:

R(c) = −u′′(c)c

u′(c)

Further, let R, R be defined by:

R = lim
c↓0

inf R(c), R = lim
c↓0

sup R(c).

The partial history at date t is given by ht = (y0, x0, c0, . . . , yt−1, xt−1, ct−1, yt ). A policy
π is a sequence {π0, π1, . . .} where πt is a conditional probability measure such that
πt (�(yt )|ht ) = 1. A policy is Markovian if for each t, πt depends only on yt . A Markovian
policy is stationary if πt is independent of t. Associated with a policy π and an initial state
y is an expected discounted sum of social welfare:

Vπ (y) = E
∞∑

t=0

δt u(ct ),

where {ct} is generated by π, f in the obvious manner and the expectation is taken with
respect to P . The value function V(y) is defined on R++ by:

V(y) = s up{Vπ (y) : π i s a pol i c y}.
Under assumption (T.4), it is easy to check that:

−∞ < V(y) < +∞ for all y > 0.

A policy,π∗, is optimal if Vπ∗ (y) = V(y) for all y > 0.Standard dynamic programming
arguments imply that there exists a unique optimal policy, that this policy is stationary and
that the value function satisfies the functional equation:

V(y) = sup
x∈�(y)

[u(y − x) + δE (V(r h(x)))]. (3)

It can be shown that V(y) is continuous, strictly increasing and strictly concave on R++.

Further, the maximization problem on the right hand side of (3) has a unique solution,
denoted by x(y). The stationary policy generated by the function x(y) is the optimal policy
and we refer to x(y) as the optimal input function and c(y) = y − x(y) as the optimal

International Journal of Economic Theory 8 (2012) 49–66 C© IAET 53



On a safe capital stock for consumption maintenance Mitra and Roy

consumption function. Using standard arguments5 in the literature, (U.3) can be used to
show that:

Lemma 1

(i) For all y > 0, x(y) > 0 and c(y) > 0.

(ii) x(y) and c(y) are continuous and strictly increasing in y on R+.

Next, we note that the stochastic Ramsey–Euler equation holds:

Lemma 2 For all y > 0,

u′(c(y)) = δE [u′(c(r h(x(y))))r h′(x(y))]. (4)

We confine attention to levels of initial stock y0 lying in the set (0, K ].This implies
that feasible consumption, investment and output in every period lie in the set [0, K ]
with probability one. Since u is bounded above on the set [0, K ], we may without loss of
generality assume that:

(U.4) u(c) ≤ 0 for all c > 0.

Let η be the limiting first elasticity of the utility function at zero defined by

lim
c↓0

inf

[
−u′(c)c

u(c)

]
= η.

We assume that:

(U.5) η > 0.

Assumptions (A.1), (T.1)–(T.4) and (U.1)–(U.5) are retained throughout the paper.

3 On the concept of safe stock for consumption maintenance

The central focus of this paper is the possibility of maintaining consumption over time;
we are interested in knowing whether the economy’s consumption path is uniformly
bounded below by a strictly positive level of consumption with probability one. In view of
Lemma 1, it is easy to see that this requires that investment and output are also uniformly
bounded below almost surely by a strictly positive number. In particular, given y0 > 0,
suppose

∃ y ′ ∈ (0, y0] such that αh(x(y ′)) ≥ y ′. (5)

Then, using Lemma 1, it is easy to check that the stochastic process of optimal output stocks
{yt (y0, ω)} from initial stock y0 defined by :

yt (y0, ω) = ωt h(x(yt−1(y0, ω))) for t ≥ 1,

5
See especially Brock and Mirman (1972) and Mirman and Zilcha (1975).
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satisfies:

yt (y0, ω) ≥ y ′ almost surely for all t ≥ 0,

and therefore, optimal consumption ct (y0, ω) = c(yt (y0, ω)) satisfies:

ct (y0, ω) ≥ c ′ almost surely for all t ≥ 0,

where c ′ = c(y ′) > 0. On the other hand, if there is no y ′ ∈ (0, y0] for which (5) holds i.e.,

αh(x(y)) < y for all y ∈ (0, y0], (6)

then output and consumption decline and approach zero if the worst shock occurs every
period; in particular, for any ε > 0 there exists T such that for all t ≥ T ,

Pr{ω ∈ � : ct (y0, ω) < ε} > 0.

In other words, (5) is a necessary and sufficient condition to ensure that the lower bound
of the support of optimal consumption over time is bounded away from zero.

Given the optimal policy function x(y), there are (only) three possibilties:

(i) there is a sequence {yn}∞n=1, yn > 0 for all n, such that {yn} → 0 and αh(x(yn)) ≥ yn

for all n;
(ii) αh(x(y)) < y for all y > 0;

(iii) there exists y∗ > 0 such that αh(x(y)) < y for all y ∈ (0, y∗) and αh(x(y∗)) ≥ y∗.

In configuration (i), (5) is satisfied for all y0 > 0 so that independent of initial stock, the
support of consumption over time is almost surely bounded away from zero; the economy
always maintains a minimum positive level of consumption (though the minimum level
itself may depend on the initial stock). Output and capital are also bounded away from zero
with probability one. Note that configuration (i) includes the situation where capital and
consumption grow near zero even under the worst realization of the random shock. The
existing literature on stochastic growth contains various sufficient conditions on preferences
and technology under which the optimal policy satisfies configuration (i); see, among
others, Brock and Mirman (1972), Chatterjee and Shukayev (2008), Mitra and Roy (2006,
2010) and Olson and Roy (2000).

In configuration (ii), from any positive initial stock, capital and consumption necessar-
ily decline under the worst realization of the random shock. In particular, (5) does not hold
for any y0 > 0 and the lower bound of the support of consumption converges to zero over
time. It has been shown that in this case consumption and capital fall below any strictly
positive level infinitely often with probability one, no matter how large the initial stock
(Mitra and Roy 2007). While it is easy to see that configuration (ii) can arise if the marginal
productivity at zero is sufficiently small relative to the discount rate, Mirman and Zilcha
(1975) presented an example to show that the optimal policy may lead to configuration
(ii) even if the marginal productivity is infinite at zero for all realizations of the ran-
dom shock; Mitra and Roy (2010) develop necessary and sufficient conditions for this
phenomenon and relate it to the nature of risk aversion displayed by the utility function.
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Figure 1 Configuration (iii).

The possibility of configuration (iii) in convex models of stochastic growth remains
unexplored. In configuration (iii), capital and consumption decline under the worst shock
if the initial stock is below a critical stock y∗ > 0, but are bounded away from zero if the
initial stock is above y∗. If y0 < y∗then (6) holds so that capital and consumption may be
arbitrarily close to zero (the lower bound of the support of consumption declines to zero
over time). On the other hand, if y0 ≥ y∗ then (5) is satisfied and the consumption path
is uniformly bounded below by c(y∗) with probability one. The stock y∗ is the minimum
safe stock for maintaining positive consumption.

Figure1 illustrates configuration (iii). Note that in the figure, optimal output expands
near zero under the best shock β; however, configuration (iii) as defined above imposes no
restriction on the behavior of the economy under better realizations of the random shock.

In the deterministic version of the model, optimal policy generates either configuration
(i) or (ii); configuration (iii) never arises.6 For instance suppose that the distribution of the
random shock is degenerate and, in particular, rt = 1 with probability one. Then, capital
and consumption grow near zero (converging to a positive steady state) and configuration
(i) obtains if h′(0) > 1

δ
. If h′(0) < 1

δ
, the capital and consumption decline everywhere and

converge to zero i.e., configuration (ii) obtains. If h′(0) = 1
δ
, then configuration (ii) obtains

unless h is linear in a neighborhood of zero (in which case, configuration (i) obtains.) We
will show that configuration (iii) may however arise in the stochastic growth model, and
this illustrates an important qualitative difference between stochastic and deterministic
models.

6
This may not hold if the utility from consumption depends on wealth or capital. See, Roy (2010).

56 International Journal of Economic Theory 8 (2012) 49–66 C© IAET



Mitra and Roy On a safe capital stock for consumption maintenance

4 Main results

In this section, we outline the main results of the paper. In particular, we develop conditions
under which the optimal policy generates configuration (iii) described in the previous
section i.e., there exists a critical level of initial stock below which capital and consumption
may be arbitrarily close to zero over time and above which, a minimum positive level of
capital and consumption is maintained over time almost surely.

4.1 Decline near zero under worst shock

In this subsection, we outline a sufficient condition under which output (and therefore,
investment and consumption) declines under the worst realization of the random shock
i.e., αh(x(y)) < y if the current stock y is sufficiently close to zero. This rules out the
possibility of maintaining a positive level of capital and consumption with probability one
from small stocks. Recall the definitions of R, R, the limits of relative risk aversion at zero,
and η, the lower limit of the first elasticity of the utility function at zero, in Section 2.

Proposition 1 Suppose that 1 < R ≤ R < ∞ and[
E

{(α

r

)R−1
}

δαh′(0)

] 1
R

<

[
1 − 1

αh′(0)

]
[1 − δ]

1
η . (7)

Then, there exists ỹ > 0 such that h(x(y)) < y for all y ∈ (0, ỹ).

Condition (7) in Proposition 1 provides a verifiable sufficient condition on the stochastic
technology and preferences under which decline under worst shock occurs near zero. Note
that for R ≥ 2, E {(α

r )R−1} is likely to be arbitrarily small if realizations r sufficiently larger
than α occur with significant probability and in that case, condition (7) is likely to be
satisfied even if αh′(0) > 1

δ
i.e., the technology is “delta-productive” even under the worst

realization of the random shock. To understand more clearly the kind of restrictions implied
by this sufficient condition and when it can be satisfied, we consider a parametric family of
utility functions and a specific distribution of the random shock.

Example 1 Consider the following utility function u that exhibits decreasing relative risk
aversion

u(c) = λ
c 1−θ

1 − θ
+ (1 − λ)

c 1−σ

1 − σ
− M, (8)

where

θ > σ > 0, θ > 2, σ �= 1, 0 < λ < 1,

and

M > λ
K 1−θ

1 − θ
+ (1 − λ)

K 1−σ

1 − σ
.
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Then, u(c) < 0 on (0, K ] and u(c) → −∞ as c → 0. Further,

η = lim
c↓0

inf

[
−u′(c)c

u(c)

]
= θ − 1,

and

R(c) = −u′′(c)c

u′(c)
= [λθ + σ (1 − λ)c θ−σ ]

λ + (1 − λ)c θ−σ

so that R(c) is strictly decreasing in c on R++,

R = R = lim
c→0

R(c) = θ.

Let r be uniformly distributed on the interval [α, β]. Then,

E

{(α

r

)R−1
}

= αθ−1

β − α

∫ β

α

r 1−θ dr = α

(θ − 2)(β − α)

[
1 −

(
α

β

)θ−2
]

and condition (7) reduces to the requirement that⎡⎢⎢⎢⎣ α

(θ − 2)(β − α)

⎛⎜⎜⎜⎝
1 −

(
α

β

)θ−2

(1 − δ)
θ

θ−1

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

1
θ

<
1

δαh′(0)

[
1 − 1

αh′(0)

]
. (9)

Given other parameters, condition (9) is satisfied if α is small enough relative to β (return
on investment is sufficiently “risky”) and, as assumed above, θ > 2 (the risk aversion at
zero is large enough). For instance, suppose θ = 3 and h′(0) = 2

α
; then, condition (9) is

satisfied if

α

β
<

[√
1 − δ

4δ

]3

.

If δ = 0.9, this is satisfied for α = 0.01, β = 17.3.
It is worth noting that though the utility function used in the above example is

one that exhibits DRRA (decreasing relative risk aversion), the DRRA property plays
no role in Proposition 1 or in the phenomenon illustrated in the example; all that is re-
quired of the utility function is that the degree of risk aversion near zero should be large
enough.

4.2 Maintaining capital and consumption from some stock

In this subsection, we provide a condition under which there is a safe stock s > 0 such that
αh(x(s )) ≥ s ; if the initial stock lies above this threshold then the consumption path is
almost surely bounded below by c(s ) > 0 and the economy sustains a minimum positive
level of consumption, capital and output with probability one.
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Using (1), (2) and the concavity of h, there exists z1 ∈ (0, K ) such that

αh(z1) = z1,
h(x)

x
>

1

α
for all x ∈ (0, z1).

For any y ∈ (0, z1), let xy ∈ (0, y) be defined by

αh(xy) = y (10)

i.e., xy = h−1( y
α

). Further, for y ∈ (0, z1), let R(y) be defined by:

R(y) = max{R(c) : y − xy ≤ c ≤ β y}
where, as before, R(c) is the Arrow–Pratt measure of relative risk aversion.

Proposition 2 Suppose there exists s ∈ (0, z1) such that

δαh′(xs )
(

1 − xs

s

)R(s )
E

[(α

r

)R(s )−1
]

≥ 1. (11)

Then αh(x(s )) ≥ s .

Condition (11) in Proposition 2 is a modified “delta-productivity” condition that
requires the discounted marginal productivity to be larger than one by a factor that depends
on the distribution of shocks and the degree of risk aversion. Among other things, the lower
the degree of risk aversion the more likely that this condition is satisfied.

4.3 Critical stock for maintaining capital and consumption

If the requirements of Propositions 1 and 2 are satisfied simultaneously, then the optimal
policy is one that exhibits decline of capital and consumption under worst shock when
initial stock is near zero but allows maintenance of a positive level of consumption and
capital if the initial stock exceeds a threshold level s . In that case, if

y∗ = inf{s : αh(x(s )) ≥ s },
then y∗ > 0; y∗ is a critical stock in the sense that αh(x(y)) < y for all y < y∗ and
αh(x(y∗)) = y∗; consumption over time may be arbitrarily close to zero with positive
probability if y0 < y∗, but if y0 ≥ y∗, the consumption path is almost surely uniformly
bounded below by c(y∗) > 0. In other words, configuration (iii) described in Section 3
obtains.

The question that arises is whether and when both condition (7) in Proposition 1 and
(11) in Proposition 2 can be satisfied simultaneously. We have noted earlier that given
other parameters, condition (7) is satisfied if the relative risk aversion near zero is large
and the spread of the shock is sufficiently large. On the other hand, given the distribution
of the random shock, condition (11) is likely to be satisfied if relative risk aversion is
sufficiently small and productivity is not too small at an intermediate level of consumption
and investment. This suggests that both (7) and (11) may hold if the distribution of the
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random shock is sufficiently spread out, risk aversion is high at zero but declines sharply
as consumption is increased while productivity declines relatively slowly as investment is
increased.

In Example 1, we considered a specific family of decreasing relative risk aversion utility
function and for the case of uniformly distributed shocks, we outlined a simple condition
(9) on the parameters under which (7) and the conclusion of Proposition 1 holds. We now
refine this example further by choosing a specific production function h and show that
under certain parametric restrictions, both conditions (7) and (11) can be satisfied by the
same economy so that the conclusions of both Propositions 1 and 2 hold.

Example 2 Consider the economy specified in Example 1. Further, suppose that

h(x) = γ x , for x ∈ (0, x)

where γ > 2 and γ

γ−1 < x. For x ≥ x , h(x) can be any increasing concave extension that
satisfies assumptions (T .1) − (T .4). Then, condition (9) in Example 1 (which is sufficient
to ensure that the conclusion of Proposition 1 holds) reduces to the requirement that⎡⎢⎢⎢⎣ α

(θ − 2)(β − α)

⎛⎜⎜⎜⎝
1 −

(
α

β

)θ−2

(1 − δ)
θ

θ−1

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

1
θ

<
1

δαγ

[
1 − 1

αγ

]
. (12)

and, given other parameters, this is satisfied if β − α is large enough in which case the
economy declines under the worst shock in a neighborhood of zero. Note that this imposes
no restriction on the value of parameters λ and σ of the utility function. Assume that β − α

is large enough for (12) to hold and that, further, the mean
(

α+β

2

)
of the distribution of

shocks is large enough so that

δ

(
α + β

2

)
γ > 1. (13)

We will now show that if λ ∈ (0, 1), σ ∈ (0, 1) are close enough to zero, then condition
(11) is also satisfied for some s > 0. In particular, choose

s = γ

γ − 1
·

Then, xs = h−1(s ) = 1
γ−1 and

s − xs = 1.

Recall that the utility function (8) exhibits decreasing relative risk aversion and

R(c) = [λθ + σ (1 − λ)c θ−σ ]

λ + (1 − λ)c θ−σ
.
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Thus,

R(s ) = max{R(c) : s − xs ≤ c ≤ βs }
= R(s − xs ) = R(1) = λθ + σ (1 − λ).

Now,

E

[(α

r

)R(s )−1
]

= E

[(α

r

)R(1)−1
]

= α

(R(1) − 2)(β − α)

[
1 −

(
α

β

)R(1)−2
]

Condition (11) is satisfied at s = 1 if,

δαγ

(
1 − 1

γ

)R(1)
α

(R(1) − 2)(β − α)

[
1 −

(
α

β

)R(1)−2
]

≥ 1. (14)

Observe that as λ → 0 and σ → 0, R(1) → 0 and the left hand side of the inequality in
(14) converges to

δ

(
α + β

2

)
γ > 1

under assumption (13). Thus, given all other parameters (that satisfy the restrictions
imposed earlier), there exists λ ∈ (0, 1), σ ∈ (0, 1) close enough to zero so that (14) holds
i.e., condition (11) is satisfied at s = 1.

Though the above example is based on a DRRA (decreasing relative risk aversion) utility
function, the fact that risk aversion is monotonically decreasing is not important for the
phenomenon that is being illustrated. The existence of a critical safe stock requires high
degree of risk aversion near zero and moderately low degree of risk aversion at intermediate
levels of consumption; whether risk aversion is actually monotonic plays no role.

5 Proofs

Proof of Proposition 1 Using (7), there exists λ ∈ ( 1
αh′(0) , 1), such that

[
E

{(α

r

)R−1
}

δαh′(0)

] 1
R

< (1 − λ)(1 − δ)
1
η .

Further, there exists ξ ∈ ( 1
R , 1) close enough to 1 such that:

(1 − λ)(1 − δ)
1
η >

1

ξ

[
E

{(α

r

)ξ R−1
}

δαh′(0)

] ξ

R

. (15)
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Step 1: A lower bound on the propensity to consume near zero. Let

q = ξ(1 − λ)(1 − δ)
1
η (16)

We will show that there exists ŷ > 0 such that

c(y) ≥ q y, for all y ∈ (0, ŷ). (17)

First, observe that as λ > 1
αh′(0) and h(x)

x ↑ h′(0) as x ↓ 0, there exists y1 > 0, such that

αh(x)

x
>

1

λ
for all x ∈ (0, y1). (18)

For any y ∈ (0, y1), using (18),

h−1
( y

α

)
y

< λ

and therefore, for all y ∈ (0, y1)

y − h−1
( y

α

)
= y

⎡⎢⎣1 −
h−1

( y

α

)
y

⎤⎥⎦ > y[1 − λ]. (19)

Since (1 − δ)
1
η > ξ(1 − δ)

1
η , we can choose ν ∈ (0, 1), close enough to 1, such that

(1 − δ)
1
νη > ξ(1 − δ)

1
η . (20)

Using assumption (U.5), there exists y2 > 0, such that[
−u′(c)c

u(c)

]
≥ νη, for all c ∈ (0, y2).

i.e., for all c ∈ (0, y2),

u′(c)

u(c)
= d

dc
[ln(−u(c))] ≤ −νη

d

dc
[ln c]. (21)

For any A > 1, c ′ ∈ (0, y2

A ), integrating both sides of (21) from c ′ to Ac ′, we have

ln(−u(Ac ′)) − ln(−u(c ′)) ≤ −νη(ln Ac ′ − ln c ′)

so that

u(Ac ′)
u(c ′)

≤ A−νη. (22)

Set

ŷ = min

{
y1,

y2

1 − λ

}
. (23)
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We now establish (17). Suppose to the contrary that

c(y0) < q y0, for some y0 ∈ (0, ŷ). (24)

As the deterministic investment sequence where an amount h−1( y0

α
) is invested every

period (and the rest is consumed) is feasible from initial stock y0,

V(y0) ≥
u
(

y0 − h−1
( y0

α

))
1 − δ

>
u(y0(1 − λ))

1 − δ
, using (19).

(25)

As u(.) ≤ 0,

V(y0) ≤ u(c(y0))

< u(q y0), using (24).
(26)

From (25) and (26),

u(y0(1 − λ))

1 − δ
< u(q y0)

so that,

u(y0(1 − λ))

u(q y0)
> (1 − δ) (27)

(the inequality reverses as u(q y0) < 0). Observe that (using (16)), q < (1 − λ), so that
using (22) and (23)

u(y0(1 − λ))

u(q y0)
<

(
1 − λ

q

)−νη

=
[

q

1 − λ

]νη

so that using (27) we have, (1 − δ) < [ q
1−λ

]νη i.e.,

q > (1 − λ)(1 − δ)
1
νη . (28)

However, from (16) and (20), we have:

q = ξ(1 − λ)(1 − δ)
1
η ≤ (1 − λ)(1 − δ)

1
νη ,

which contradicts (28). This completes Step 1.

Step 2: Decline (under Worst Shock) Near Zero. We now establish the main claim of the
proposition. Using the definition of R, R in Section 2, there exists y ∈ (0, ŷ), such that:

1

ξ
R ≥ R(c) ≥ ξ R for all c ∈ (0, y). (29)
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Let

ỹ = α

β
y. (30)

We are ready to show that αh(x(y)) < y for all y ∈ (0, ỹ). Suppose not. Then, there exists
y ∈ (0, ỹ) such that

αh(x(y)) ≥ y. (31)

From the Ramsey-Euler Equation(4):

u′(c(y)) = δE [u′(c(r h(x(y))))r h′(x(y))]

≤ δE
[

u′
(

c
( r

α
y
))

r
]

h′(x(y)), using (31),

so that

1

δh′(x(y))
≤ E

⎡⎢⎣r
u′
(

c
( r

α
y
))

u′(c(y))

⎤⎥⎦
Using Step 1, c( r

α
y) ≥ q r

α
y so that u′(c( r

α
y)) ≤ u′(q r

α
y); further, c(y) ≤ y, so that

u′(c(y)) ≥ u′(y), and therefore

1

δh′(x(y))
≤ E

⎡⎢⎣r
u′
(

q
r

α
y
)

u′(y)

⎤⎥⎦ = E

⎡⎢⎣r

⎧⎪⎨⎪⎩
u′
(

q
r

α
y
)

u′
( r

α
y
)
⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

u′
( r

α
y
)

u′(y)

⎫⎪⎬⎪⎭
⎤⎥⎦

≤ E

[
r

{
1

q

} R
ξ {α

r

}ξ R
]

.

(32)

The last inequality follows from (29), the fact that β

α
y < y (using (30)), and Lemma 4 in

Mitra and Roy (2010). From (32)

q
R
ξ ≤ E

[(α

r

)ξ R−1
]

δαh′(0)

i.e.,

q ≤
[

E

{(α

r

)ξ R−1
}

δαh′(0)

] ξ

R

(33)

Using the expression for q in (16) we have

ξ(1 − λ)(1 − δ)
1
η ≤

[
E

{(α

r

)ξ R−1
}

δαh′(0)

] ξ

R

which contradicts (15). The proof is complete. �

64 International Journal of Economic Theory 8 (2012) 49–66 C© IAET



Mitra and Roy On a safe capital stock for consumption maintenance

Proof of Proposition 2 Suppose to the contrary that

αh(x(s )) < s . (34)

Then,

x(s ) < xs , c(s ) > s − xs . (35)

This implies that

h′(x(s )) ≥ h′(xs ), u′(c(s )) < u′(s − xs ) (36)

From the Ramsey-Euler Equation(4):

u′(c(s )) = δE [u′(c(r h(x(s ))))r h′(x(s ))]

Using (36),

u′(s − xs ) > δE [u′(c(r h(x(s ))))r h′(xs )]

≥ δE
[

u′
(

c
( r

α
s
))

r h′(xs )
]

, using (34)

≥ δE
[

u′
( r

α
s
)

r h′(xs )
]

i.e.,

δE

⎡⎢⎣ u′
( r

α
s
)

u′(s − xs )
r h′(xs )

⎤⎥⎦ < 1 (37)

Using Lemma 4 in Mitra and Roy (2010), we have,

u′
( r

α
s
)

u′(s − xs )
=

u′
( r

α
s
)

u′
((

1 − xs

s

)
s
) ≥

⎛⎜⎝1 − xs

s
r

α

⎞⎟⎠
R(s )

and using this in (37) yields:

δαh′(xs )
(

1 − xs

s

)R(s )
E

[(α

r

)R(s )−1
]

< 1. (38)

which contradicts (11). �
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